B is the gap perimeter;
n is the viscosity;

Z is the vertical coordinate;
H, = ogko’g BAT)?B6/

121T; K = g’k?%p? B4(AT)?-

B6%/1201*Degr;

k is the permeability,
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RADIATIVE ANGULAR COEFFICIENTS IN
AXISYMMETRIC SYSTEM

N. N, Chentsov, G. V., Dumkina, UDC 536.3
and N, S, Shoidina

A method is proposed for the calculation of the angular coefficients from an analytic determina-
tion of the region of visibility.

The design of furnaces, high-temperature chemical equipment, high-temperature energy-conversion
apparatus, and cryogenic systems involves calculations of radiative heat transfer.

Because of the complexity of radiative heat transfer and the lack of accurate values of the emissive char-
acteristics of surfaces, it is usual in calculations to consider models and shells with simple surface proper-
ties. . .

In calculating the radiative heat transfer between diffusely emitting and diffusely reflecting surfaces
separated by a diathermal medium, it is necessary to determine the angular coefficients of the radiation,
which determines the proportion of the energy transfer transmitted from one surface to another.

There are a considerable number of works in which the angular coefficients are calculated analytically
for various configurations ([1-4], etc.). The present paper proposes an algorithm for the computer calcula-
tion of radiative angular coefficients.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 2, pp. 306-312, February, 1978 Original
article submitted December 8, 1976.
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Fig, 1, Axisymmetric system:

z is the coordinate along the axis

of rotation; r is the distance from
the axis; 6 is the angle of rotation
about the axis.

In the case when the radiative flux density is uniformly distributed over the surface, the angular coeffi-
cient between the surfaces p and q is

Ppy = : :

{ aa,
AP

where Ay and Ay are the surface areas of p and q; Lyj is the distance between the elements i and j of the sur-
faces; 8 and Bj are the angles between the internal normals to the surface elements and the lines containing

these elements,

The region of integration extends over those parts of the surfaces p and q which are directly visible to
one another, .

H" cos f;- cosﬁ,dA A,
a4,

The angular coefficients are calculated in an axisymmetric system consisting of a cavity with inferior
bodies (Fig. 1). The regions p and q adopted in this case are bands of the surface r = r(z) cut by the planes
z = const. Each region p(q) is divided into smaller bands i(j). The required integral is calculated for each
pair i, j and then for each pair p, q these integrals are summed over all the i bands into which the region p
is divided and over all the j bands into which region q is divided,

The integral is calculated using the following formula:

__j‘jf,,dA dA; = ~——S‘f”(rl, zi, 0, 7; 2), 6)d6. 2)

4,2;

The following theorem is valid: In an axisymmetric configuration, the region of visibility of the points
p(r;, 0, zj) and Q(rj, 0, zj) determined by an arbitrary solid of revolution consists of not more than two arcs
in [0, 7.

Consider the interfering body formed by rotation of the segment ryry about the z axis (Fig.2). Three
cases are possible:

a) ry and ry are any finite values, r # 0;

b) rg =0, r{ >ry, ry =const;

¢y ry >, rgp = 0,

Now construct two cones with vertex at p and directrices passing through the points r =ry, z =z, (cone I)
and r=rf, z=z) (coneIl) (casea).” When the pointQ is rotated about the axis, there is visibility between the points P

and Q when the ray PQ lies outside conelor 1ns1de cone . Hence, the region of visibility of points P and Q for 6 €0, 7]
consists of no more than two arcs: [0, oF ], [6 7.

For ry = 0(case b) the region of v151b111ty consists of one arc [0, 91)]' for r; —~ = (case ¢) the region of
visibility is [e{], 7.



Fig. 2. Region of visibility
of points P and Q: M@, VK

An interesting body lying on the axis (Fig. 3a) may be represented as a set of large number of sufficiently
thin cylinders (case b), for which rg) = 0, r]x = const(\), where A is the cylinder number. The region of visi-
bility Aij determined by the given interfering body is

=10, 01,
where
Of,v = min OF A
a i
Analogously, the region of visibility determined by the surface of an axisymmetric cavity (Fig. 3b) is [B%j s Ty
where

eij = max eI}n. .
A

The region of visibility determined by an interfering body of toroidal type (Fig. 3c) is in the general case
Ay =10, 8510 185, m),
where
95 = min Gtih, B‘Ij = max GE&.
P PR
Congider a system for which the interfering bodies are a body lying on the axis and the surface of an
axisymmetric cavity. The region of visibility for any pair of points P and Q consists of one arc [B{j, Gifj‘].

The necessary and sufficient conditions for there to be visibility between the points P(rj, 0, zj), Q(rj, 0, z;)
are: 1) that the angle $j and Bj be acute; 2) that the segment PQ encounter no interfering bodies.

Assume that the surfaces of the interfering bodies are either cylinders, cones, or spheres. These sur-
faces may be described by the general equation

r%, = k}, (Z -“Eh)z—l" R%v (3)

where A is the number of the surface; &) is the coordinate of the sphere center or the vertex of the cone; k) =
—1 for a sphere; k) = tan%p for a cone ( + /2 is the angle between the internal normal to the surface and the
positive direction of the axis of rotation); k) = 0 for a cylinder; R) = 0 for a cone; R) is the radius in the case
of a sphere or a cylinder.

The straight line PQ and the interfering surface in Eq. (3) determine the coordinate z of the point of inter-
section

azz2—2bz +c=0, 4
where

6= 4 1] — 2y cos0— by ey — 2P = m -+ heost;
b= rizj+riz;—7ir;(z + 2;) cos8 — kyF, (2; — 2, = I 4 tcos B;

2.2 2 2
¢ = riz} +rizi —2rirjz;z;c080 — (BE -+ RiNZ; — 2,2 = s + g cos®.
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Fig. 3. Different types of interfering body.
The ray PQ intersects the inferfering body if the roots of Eq. (4) are real and the point of intersection
(rp, zp) lies:
1) between P and Q
(5)

% gngzi'

2) on the surface of the interfering body but not on its continuation (the interfering body is bounded on the
z axis by the coordinates zfy, zx))

2, <2, <7 {6)
To determine the region of visibility, those among the interfering bodies which affect the angle of visi-
bility of the points P and Q are selected, i.e., those for which
¢ z<(@nVE<y N
Then the interval of visibility is determined independently for each interfering surface.

The procedure for determining the region of visibility of the points P and Q (z; = zj) for one interfering
surface is as follows:

1) to determine the visibility between the points P and Q for 6 =0,
2) to verify that point Q is visible from point P for 6 = 7,
As a result of steps 1 and 2 for the interfering surface, one of four possibilities may be found:

) I i 111 v
Visibility at 6=0 | yes i no , yes l no

Visibilityat 6= | yes | mo | mo | yes

The region of visibility of points p and Q is [0, 7] in case I, zero in case II, [0, G;E] in case III, and [9I s
n in case IV (Bf is the angle at which the straight line cuts the interfering surface when the point @ is rotated
about the z axis).

The equation of the tangent to the interfering surface gives

IR —8 — 22+ 8@+ 2)~V il —0D) (7 =) for a sphere
rir; (8)

cos GE =

3 N 3
oo — V(’ i — ) (r; —pi) for a cone or cylinder
rir]' )

0; = ka(z, —EP--RL v=1, .
The tangent determines the angle of visibility if Egs. (5) and (6) hold for the coordinates of the point of
contact.

If there is no tangent, the angle at which the straight line passes through the edge of the interfering sur-
face (z1p or zf)) is determined

2lzyy — 55— mzfx . (9)
he}, — 2z, + &

F
cos 0y, =



TABLE 1. Angular Coefficients %ij

Region No, l T 2 3 4 5 6 7 8
3 0 0 0 0 0 0,06688 027174 0,1512
30 0 0 0  0,00061 ©0,0009 0 0 0,00051
34 0 0 0 0 0 0 0o _ o
RegionNo. | 9 10 1 12 13 4 15
3 0,10993 0,08134 0,06119 0,00044 0,01463 0,01596 0,01578
30 0,00086 0.00155 0,00306 0,04347 0.04628 0.10031 019174
34 0,02097 0.10796 0,16726 0,06494 0,11469 0.09496 0.07791
Region No. 16 17 18 19 20 21
3 0,01369 001121 0,00885 0,00712  0,00583 0,01827
30 0,24544  0.18213 0.09302 0,04284  0.02047 0.02053
34 0,06153  0,03957 0.01982 0,00061  0.00498 0.00417
Region No, { 22 23 24 25 2% 97 28 29 30
3 0,00849 0 0 0 0 0 0 0 0
30 0,0066 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0
Region No. | 31 32 33 34 35
3 0 0,02292 0 0 0,11609
30 0 0 0 0 0
34 0 0,14709 0,06548 0 0
7ot 4 A 44 8
557\ \1 ng'/4‘/5'/5'/7'/5'/5'202,
J 89 0/ ]
Nk ¥ w2 2| %R
©
-5 2 27 23-
2 35 4 1 S o
p N 37 %,
3|z ] ' ' z
™ 1

Fig. 4. Configuration of system whose angular coeffi-
cients are shown in Table 1; z is the axis of rotation.
The division into regions is shown, The dimensions
are given in cm,

If the straight line PQ passes through both ends of the interfering surface when the point Q is rotated
about the z axis, the smallest of the two resulting values of oF is chosen ((9I is determined from the condition
that the straight line PQ passes through the edge of the interfering surface).

Considering the set of interfering surfaces in Eq. (3), the following sequences are obtained:
1:68, of, ..., o%;
e, e, ..., 6f,
where 1, 2, ... ,n is the number of the interfering surface,

The region of visibility for points P and Q is (G}j . 6}%) , where
6},- = max G;{; 65 = m;n 6;‘5 .
A

If eij > ef’J the point Q is not visible from P,

For the case z; =z;, the only bodies that may interfere are those whose. projections on the z axis include
the projections of the points P and Q.



If there is no visibility between P and Q for 6 = 0, the region of visibility is 0. If there is visibility for
6= 0and 6 =7, the region of visibility is [0, 7]. Ifthere is zerovisibility for 6 =, the angle of visibility is deter-
mined from the condition of tangency of the straight line PQ at the interfering surface

2V 2 — o —ot o
cos0F = B (ri —pa(ri —pn) o
7il;
The integrand in Eq. (2) is
fij= 1 (A + Bijcos8)(C;; + D;;cos 6)
= i

L4 (E;; - F;;cos By
and the coefficients Aijs Bij’ Cija Dij, Eij, Fij are calculated from the values of r;, 2z;, ¥;, Iy, Zj, b3
95.
The integral I = j fijde is calculated from the trapezium rule.
ol

+

For small angles (8 = 30°) and for z; =zj, an analytic expression may be obtained for the integral.
Ag an illustration, Table 1 gives the angular coefficients calculated for the gystem shown in Fig, 4.

The system includes 166 computational points. Regions 1-6, 8-11, 13-25, and 28-31 are divided into
two computational points, regions 7, 12, 26, 27, 32, and 33 are divided into three, and regions 34 and 35 into
five; the division is uniform over the length,

Ag is evident from Table 1, the accuracy of the angular coefficients obtained using angular-coefficient
35 35 35

algebra is sufficiently high: 2 @3, = 1.0016, E ?3p,j =1.00032, 'Py,j =1.000999. At the corners (regions
=1 =1 .

i=1

f
5-6 and 20-21) the accuracy of the calculation is rather lower.

The time required for the calculation on a BESM-6 computer was 20 sec.

In determining the region of visibility by the traditional method (the region [0, 7] is divided into 50 inter-
vals of equal length and the visibility is determined for each interval) the same accuracy requires 10-20 times
the calculation time.

NOTATION
P, qd, i, ] are the surface numbers;
Ap is the surface area of p;
?pq is the angular coefficient between surfaces p and q;
r,z, 0 are the cylindrical coordinates;
Bi is the angle between internal normal to surface i and the line joining surfaces i and j;
Lij is the distance between elementary areas da;, day;
P is the point of i-th surface;
Q is the point of j~th surface;
A is the number of interfering surface;
k, &, R are the parameters of interfering surface;
n is the number of interfering surfaces;
Ajj is the region of visibility of points P and Q;
P+ 2 is the angle between internal normal to surface and positive direction of axis of rotation.
Indices
1 is the initial (at beginning of interval);

F is the final (at end of interval).

LITERATURE CITED

1, E. M. Sparrow and R. D. Cess, Radiation Heat Transfer, Brooks/Cole (1969).
2. Yu. A. Burinov, E. K. Buglaev, and E, E. Prokach, Works of Krasnodar Polytechnic Institute {in Rus-
sian], No. 43 (1973), p. 109,

211



3. E. G. Sosnovaya, Yu. A. Surinov, and N. V. Sosnovyi, Works of Krasnodar Polytechnic Institute [in
Russian}, No. 54 (1973).

4. Souel and O'Brien, Teploperedacha [a collection of Russian translations of foreign articles], No. 3
(1972).

REFLECTIVE POWER OF TWO-PHASE MEDIA OF
CYLINDRICAL GEOMETRY

K. S. Adzerikho and N, V. Podluzhnyak UDC 535.36

The brightness of the radiation reflected from a cylinder filled with particles of known optical
properties is considered. The dependence of the reflective power on the optical properties of
the medium and the experimental conditions is investigated in the single-scattering approxima-
tion. The limits of applicability of the method are estimated.

In determining the reflective power of two-phase media of cylindrical geometry, the approximation most
commonly used is that of Eddington (see [1, 2], for example). As shown in [3, 4], it may correctly be used to
calculate the emissive characteristics of two-phase media of nonplanar geometry. However, when external
radiation is incident on a finite two-phase medium, the use of the Eddington approximation requires particular
caution, especially for media of optical thickness 7 € 1-3. In the present work, the single-scattering approxi-
mation is used to calculate the reflective power of such media and its dependence on the optical properties of
the medium and the experimental conditions is analyzed. '

The solution of the radiation-transfer equation in a two-phase medium may be written in the form (see
[5]1, for example)

I, ) =1(0, 1) exp[—fa(s')ds'] + jsJ(s') exp[— j x(s") ds"| ds'. @
0 0 s’ .

Here I(s, 1) is the radiation intensity at the point s in the direction 1 =1(8, ¢); 1(0, 1) is the infensity of
the external radiation; J(s) is the emissive power of an elementary volume of the medium; & =% + o is the
attenuation coefficient, equal to the sum of the absorption and scattering coefficients,

Since J(s) depends on I(s, 1) in the scattering medium, Eq. (1) may only be solved by numerical methods.
Limiting consideration to the case of single (nonmultiple) scattering, a solution of the problem may be obtained
by replacing J(s) in Eq. (1) by the distribution function for the sources created by the external radiation. In the
case of nonplanar media, the integral term in Eq. (1) requires special consideration. Its physical meaning in
the context of single scattering is fairly simple. It is the sum of the contributions of the radiation from each
point of the medium in a given direction, taking into account attenuation.

Consider a medium of cylindrical geometry containing particles of known optical properties. The chosen
coordinate system is shown in Fig. la: the x axis, from which 7 is measured is chosen in the plane containing
the direction of the external radiation and the cylinder axis. The angles 1 and ¢ are positive when measured
in the counterclockwise direction and negative in the opposite case. The angle 0, characterizing the direction
of observation of the scattered radiation, is measured from the z axis. It is simple to show that, for normal
incidence of the external radiation, the distribution of radiation sources in the cylindrical medium is given by
the relation

A
S=8(r, 0 )= Ti J = TJP(Y)IOGXP['_T("’ gut )

where I, is the external-radiation intensity in the direction 1; =14(6y, @g); p(Y) is the scattering index for an ele-
mentary volume; ¥ is the angle between the incident and observed radiation; A = o/(% + o) is the probability of
survival of a quantum; and: ‘
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